Ultraproducts, QWEP von Neumann algebras, and the Effros–Maréchal topology

Hiroshi Ando, Uffe Haagerup, Carl Winsløw

2 Citationer (Scopus)
79 Downloads (Pure)

Abstract

Based on the analysis on the Ocneanu/Groh-Raynaud ultraproducts and the Effros-Maréchal topology on the space vN(H) of von Neumann algebras acting on a separable Hilbert space H, we show that for a von Neumann algebra M ∈ vN(H), the following conditions are equivalent: (1) M has the Kirchberg's quotient weak expectation property (QWEP). (2) M is in the closure of the set inj of injective factors on H with respect to the Effros-Maréchal topology. (3) M admits an embedding i into the Ocneanu ultrapower Rω of the injective III1 factor R∞ with a normal faithful conditional expectation ϵ: Rω → i(M). (4) For every ϵ > 0, n ∈ ℕ and ξ1;⋯; ξn ∈ ℘M, there are k ∈ ℕ and a1;⋯; an ∈ Mk(ℂ)+ such that |〈ξi, ξj〉 - trk(aiaj)| < ϵ (1 ≤ i; j ≤ n) holds, where trk is the tracial state on Mk(ℂ), and PM is the natural cone in the standard form of M.

OriginalsprogEngelsk
TidsskriftJournal fuer die Reine und Angewandte Mathematik
Vol/bind715
Sider (fra-til)231-250
ISSN0075-4102
DOI
StatusUdgivet - jun. 2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'Ultraproducts, QWEP von Neumann algebras, and the Effros–Maréchal topology'. Sammen danner de et unikt fingeraftryk.

Citationsformater