Personlig profil

Primære forskningsområder

Harvesting Anti-Cancer Compounds

Did you know that some plants form compounds with anti-cancer effects when they need to defend themselves? Johan Andersen-Ranberg is trying to trick the recipes for these compounds out of the plants, as to create new cheap ways of producing otherwise very expensive medicines. In this way, cancer treatment with these effective but rare compounds can be made available for widespread use.

PhD Student
 
  • Johan Andersen-Ranberg
  • PhD thesis title: Biosynthesis of High Value Bioactive Natural Products
  • MSc. in Applied Biotechnology. Master thesis title: Utilizing Synthetic Biology in Cyanobacteria
  • Terpenoid Group
  • Department of Plant and Environmental Sciences
  • Faculty of Science
  • [email protected]

 

What is your project about?

I am trying to find out how plants synthesize a class of very useful compounds called diterpenoids. The first part of the diterpenoid biosynthesis has been mapped out. It comprises the assembly of the 20-carbon atom backbone that all molecules belonging to the terpenoid class share. I am focusing on the second part of the synthesis, where the specialized group of enzymes called cytochrome P450s (CYPs) decorate the terpenoid backbone with various side chains and active groups in a region- and stereo specific manner, creating a diverse set of molecules with many different physiological roles. Plant cells use some of these as defense compounds, which often have medicinal effects in humans.

I am working on a new approach to identify novel drug candidates, by expressing various P450 enzymes that create analogs or derivates of known drug candidates. Furthermore I am working on sequencing the transcriptome of the tissue from where the diterpenoids of interest originate, to map which P450 enzymes play a role in their biosynthesis. I am planning homology studies with related well-described P450s in the specialized metabolism and evolutionary mapping of subfamilies within the P450 enzyme class. In parallel I will attempt to identify substrate and product of the target enzymes using E.coli and in vitro assays. In concert, this research will hopefully bring us closer to an understanding of how different terpenoids are synthesized and how we can use them.

How do you see your work being applied outside the world of research?

The fruits of my research are planned to be used in the light driven project, which aims at establishing photosynthetic production of high-value compounds, such as terpenoids with anti-cancer properties. One of the goals is to insert the biosynthetic pathways into chloroplasts to optimize the product output.

What motivates you in your work?

It motivates me to analyze the data, and thereby adding pieces to the metabolic puzzle that we are studying in our group. I also enjoy the interaction with the other investigators, both my collaborators within and outside the department.

Why did you choose to work with Synthetic Biology?

I think that the strength of being a part of a multidisciplinary research center such as Center for Synthetic Biology, is that you are surrounded by very bright people who puts a lot of energy into their work. Also the Center has resources to allow you to pursue different research ideas.

In what way do you collaborate with researchers from the other scientific disciplines? Who do you collaborate with?

Within the UNIK, my project is a part of the light driven synthesis project, in which I am collaborating Professor Poul Erik Jensen, my supervisor Björn Hamberger and postdoc Agnieszka Zygadlo among others. I am also collaborating with Japanese researchers from University of Shizouka. They inspire me, and help me troubleshoot. One of them is visiting shortly. In the future, we will characterize the target enzymes in collaboration with people from Nano Science working within the Center for Synthetic Biology.

What accomplishment are you most proud of?

I am proud of having in collaboration with others, established a platform for expression of diterpene synthases with a very high success rate.

What do you do in your spare time?

I enjoy kitesurfing, singing and skiing.

Ekspertise relateret til FN’s Verdensmål

I 2015 blev FN-landende enige om 17 Verdensmål til at standse fattigdom, beskytte planeten og sikre velstand for alle. Denne persons arbejde bidrager til følgende verdensmål:

  • Verdensmål 3 - Sundhed og trivsel

Fingeraftryk

Dyk ned i forskningsemnerne, hvor Johan Andersen-Ranberg er aktive. Disse emneetiketter kommer fra dennes persons arbejder. Sammen danner de et unikt fingerprint.
  • 7 Lignende profiler