Abstract
Sortilin is a multifunctional neuronal receptor involved in sorting of neurotrophic factors and apoptosis signaling. So far, structural characterization of sortilin and its endogenous ligands has been limited to crystallographic studies of sortilin in complex with the neuropeptide neurotensin. Here, we use hydrogen/deuterium exchange mass spectrometry to investigate the conformational response of sortilin to binding biological ligands including the peptides neurotensin and the sortilin propeptide and the proteins progranulin and pro-nerve growth factor-β. The results show that the ligands use two binding sites inside the cavity of the β-propeller of sortilin. However, ligands have distinct differences in their conformational impact on the receptor. Interestingly, the protein ligands induce conformational stabilization in a remote membrane-proximal domain, hinting at an unknown conformational link between the ligand binding region and this membrane-proximal region of sortilin. Our findings improve our structural understanding of sortilin and how it mediates diverse ligand-dependent functions important in neurobiology.
Original language | English |
---|---|
Journal | Structure |
Volume | 27 |
Issue number | 7 |
Pages (from-to) | 1103-1113.e3 |
ISSN | 0969-2126 |
DOIs | |
Publication status | Published - 2 Jul 2019 |