Expression of virulence-related genes in Listeria monocytogenes grown on Danish hard cheese as affected by NaCl content

7 Citations (Scopus)

Abstract

Expression of virulence-related genes in Listeria monocytogenes incubated on cheese was assessed by real-time quantitative polymerase chain reaction. The objective of the study was to investigate the impact of sodium chloride concentration in cheese on transcription of virulence genes and, thereby, virulence potential of L. monocytogenes. The expression studies were performed with L. monocytogenes strains characterized by different tolerance to salt stress. Strains ATCC® 51779 and DSMZ 15675 were incubated on the Danish hard-cheese type Samsoe, with low (<0.15% [wt/wt]) and high (3.6% [wt/wt]) content of NaCl. Genes differentially expressed (p<0.05) through the 48-h incubation were transcriptional regulators prfA and agrA, genes of the main virulence cluster inlA, hly, actA, involved in invasion of the epithelial cells, and genes bsh, opuC, gadC, clpP, and ami, associated with osmotic stress responses in L. monocytogenes. The more sensitive strain ATCC® 51779 was most responsive, showing significant upregulation of prfA, actA, hly, and bsh both at low and high NaCl. Strain DSMZ 15675 was less responsive to NaCl stress, showing reduced or consistent gene transcription at all conditions. Decreased transcription of agrA, ami, gadC, and opuC in both strains was promoted by low NaCl content. The study indicated that virulence gene expression of L. monocytogenes grown in cheese was affected by NaCl content and that effect was more significant in strains sensitive to both hypo- and hyperosmotic stresses.

Original languageEnglish
JournalFoodborne pathogens and disease
Volume12
Issue number6
Pages (from-to)536-544
Number of pages9
ISSN1535-3141
DOIs
Publication statusPublished - 1 Jun 2015

Fingerprint

Dive into the research topics of 'Expression of virulence-related genes in Listeria monocytogenes grown on Danish hard cheese as affected by NaCl content'. Together they form a unique fingerprint.

Cite this