TY - JOUR
T1 - Endothelial cell activation, oxidative stress and inflammation induced by a panel of metal-based nanomaterials
AU - Danielsen, Pernille Høgh
AU - Cao, Yi
AU - Roursgaard, Martin
AU - Møller, Peter
AU - Loft, Steffen
PY - 2015/10/3
Y1 - 2015/10/3
N2 - The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important in the development of cardiovascular diseases. The NMs used were five TiO2 NMs with different charge, size and crystal structure, coated and uncoated ZnO NMs and Ag which were tested in a wide concentration range. There were major differences between the types of NMs; exposure to ZnO and Ag resulted in cytotoxicity and increased gene expression levels of HMOX1 and IL8. The intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) expression were highest in TiO2 NM-exposed cells. There was increased adhesion of THP-1 monocytic cells onto HUVECs with Ag exposure. None of the NMs increased the intracellular ROS production. There were no major effects of the coating of ZnO NMs. The TiO2 NMs data on ICAM-1 and VCAM-1 expression suggested that the anatase form was more potent than the rutile form. In addition, the larger TiO2 NM was more potent than the smaller for gene expression and ICAM-1 and VCAM-1 expression. The toxicological profile of cardiovascular disease-relevant biomarkers depended on composition, size and crystal structure of TiO2 NMs, whereas the charge on TiO2 NMs and the coating of ZnO NMs were not associated with differences in toxicological profile.
AB - The importance of composition, size, crystal structure, charge and coating of metal-based nanomaterials (NMs) were evaluated in human umbilical vein endothelial cells (HUVECs) and/or THP-1 monocytic cells. Biomarkers of oxidative stress and inflammation were assessed because they are important in the development of cardiovascular diseases. The NMs used were five TiO2 NMs with different charge, size and crystal structure, coated and uncoated ZnO NMs and Ag which were tested in a wide concentration range. There were major differences between the types of NMs; exposure to ZnO and Ag resulted in cytotoxicity and increased gene expression levels of HMOX1 and IL8. The intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1(VCAM-1) expression were highest in TiO2 NM-exposed cells. There was increased adhesion of THP-1 monocytic cells onto HUVECs with Ag exposure. None of the NMs increased the intracellular ROS production. There were no major effects of the coating of ZnO NMs. The TiO2 NMs data on ICAM-1 and VCAM-1 expression suggested that the anatase form was more potent than the rutile form. In addition, the larger TiO2 NM was more potent than the smaller for gene expression and ICAM-1 and VCAM-1 expression. The toxicological profile of cardiovascular disease-relevant biomarkers depended on composition, size and crystal structure of TiO2 NMs, whereas the charge on TiO2 NMs and the coating of ZnO NMs were not associated with differences in toxicological profile.
U2 - 10.3109/17435390.2014.980449
DO - 10.3109/17435390.2014.980449
M3 - Journal article
C2 - 25405261
SN - 1743-5390
VL - 9
SP - 813
EP - 824
JO - Nanotoxicology
JF - Nanotoxicology
IS - 7
ER -