Abstract
It is demonstrated that DNA photofootprinting analysis of the intercalating depsipeptide echinomycin, and the minor groove-binders distamicyn, 4',6-diamidino-2-phenylindole (DAPI) and Hoechst 33258 can be performed using 9-[6-(2-diazocyclopentadienylcarbonyloxy)hexylamino]acridine (DHA) [Nielsen et al. (1988) Nucleic Acids Res. 16, 3877-3888] or 2-methoxy-6-azido-9-aminoacridine (MAA) [Jeppesen et al. (1988) Nucleic Acids Res. 16, 5755-5770]. Both the extent of the drug-binding sites and their relative strength can be determined with either reagent. DNA has the advantage of giving virtually sequence-uniform DNA photocleavage. On the other hand, structural changes in the DNA are detected by MAA. Using the 232-base-pair EcoRI-PvuII pUC19 restriction fragment, it is found that cleavage protection by distamycin, DAPI and Hoechst 33258 all require an (A.T)4 sequence, whereas protection by echinomycin was confined to a G + C-rich 8-base-pair region.
Originalsprog | Engelsk |
---|---|
Tidsskrift | European Journal of Biochemistry |
Vol/bind | 182 |
Udgave nummer | 2 |
Sider (fra-til) | 437-44 |
Antal sider | 8 |
ISSN | 0014-2956 |
Status | Udgivet - 15 jun. 1989 |