TY - JOUR
T1 - Differences in carbon and nitrogen stable isotope signatures amongst wild and released pheasant populations
AU - Jensen, Per Moestrup
AU - Jensen, Lars Stoumann
AU - Pipper, Christian Bressen
AU - Madsen, Philip
PY - 2012/8
Y1 - 2012/8
N2 - Game birds such as pheasants Phasianus colchicus (Horsfield) are bred and released to supplement wild living populations prior to the hunting season. The total bag records of these birds are, therefore, not suitable for monitoring the development of wild populations because they are heavily influenced by game management. Wild and released pheasants can be expected to be genetically similar or identical to wild birds because wild birds are captured and used for breeding. It is, therefore, not possible to use genetic methods for identifying released individuals. Heavy stable isotopes are incorporated in animal tissues in a predictable manner and depend on the concentration of heavy isotopes in the diet. The heavy isotopes 13C and 15N accumulate in the food chain because the more common lighter isotopes are excreted at a higher rate than the heavy isotopes. Bred and released pheasant feed on a uniform plant-based diet, and it can, therefore, be expected that these animals have lower and less variable levels of heavy isotopes than individuals from a wild populations which feed on a diverse diet of plants and invertebrates. We investigated the isotope signatures in feathers from wild and released pheasant populations and compared the levels and variation in isotope signature amongst the populations. Bred and released pheasants are clearly identified in comparison to released pheasants as wild types have higher δ15N.
AB - Game birds such as pheasants Phasianus colchicus (Horsfield) are bred and released to supplement wild living populations prior to the hunting season. The total bag records of these birds are, therefore, not suitable for monitoring the development of wild populations because they are heavily influenced by game management. Wild and released pheasants can be expected to be genetically similar or identical to wild birds because wild birds are captured and used for breeding. It is, therefore, not possible to use genetic methods for identifying released individuals. Heavy stable isotopes are incorporated in animal tissues in a predictable manner and depend on the concentration of heavy isotopes in the diet. The heavy isotopes 13C and 15N accumulate in the food chain because the more common lighter isotopes are excreted at a higher rate than the heavy isotopes. Bred and released pheasant feed on a uniform plant-based diet, and it can, therefore, be expected that these animals have lower and less variable levels of heavy isotopes than individuals from a wild populations which feed on a diverse diet of plants and invertebrates. We investigated the isotope signatures in feathers from wild and released pheasant populations and compared the levels and variation in isotope signature amongst the populations. Bred and released pheasants are clearly identified in comparison to released pheasants as wild types have higher δ15N.
U2 - 10.1007/s10344-012-0609-3
DO - 10.1007/s10344-012-0609-3
M3 - Journal article
SN - 1612-4642
VL - 58
SP - 755
EP - 760
JO - European Journal of Wildlife Research
JF - European Journal of Wildlife Research
IS - 4
ER -