The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2

R V Immink, N H Secher, C M Roos, F Pott, P L Madsen, J J van Lieshout

    65 Citations (Scopus)

    Abstract

    In the normocapnic range, middle cerebral artery mean velocity (MCA Vmean) changes approximately 3.5% per mmHg carbon-dioxide tension in arterial blood (PaCO2) and a decrease in PaCO2 will reduce the cerebral blood flow by vasoconstriction (the CO2 reactivity of the brain). When standing up MCA Vmean and the end-tidal carbon-dioxide tension (PETCO2) decrease, suggesting that PaCO2 contributes to the reduction in MCA Vmean. In a fixed body position, PETCO2 tracks changes in the PaCO2 but when assuming the upright position, cardiac output (Q) decreases and its distribution over the lung changes, while ventilation (VE) increases suggesting that PETCO2 decreases more than PaCO2. This study evaluated whether the postural reduction in PaCO2 accounts for the postural decline in MCA Vmean). From the supine to the upright position, VE, Q, PETCO2, PaCO2, MCA Vmean, and the near-infrared spectrophotometry determined cerebral tissue oxygenation (CO2Hb) were followed in seven subjects. When standing up, MCA Vmean (from 65.3+/-3.8 to 54.6+/-3.3 cm s(-1) ; mean +/- SEM; P
    Original languageEnglish
    JournalEuropean Journal of Applied Physiology
    Volume96
    Issue number5
    Pages (from-to)609-14
    Number of pages6
    ISSN1439-6319
    DOIs
    Publication statusPublished - 2006

    Fingerprint

    Dive into the research topics of 'The postural reduction in middle cerebral artery blood velocity is not explained by PaCO2'. Together they form a unique fingerprint.

    Cite this