Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans

René B Svensson, Tue Hassenkam, Philip Hansen, Michael Kjaer, Stig P Magnusson

46 Citations (Scopus)

Abstract

Correct mechanical function of tendons is essential to human physiology and therefore the mechanical properties of tendon have been a subject of research for many decades now. However, one of the most fundamental questions remains unanswered: How is load transmitted through the tendon? It has been suggested that the proteoglycan-associated glycosaminoglycans (GAGs) found on the surface of the collagen fibrils may be an important transmitter of load, but existing results are ambiguous and have not investigated human tendons. We have used a small-scale mechanical testing system to measure the mechanical properties of fascicles from human patellar tendon at two different deformation rates before and after removal of GAGs by treatment with chondroitinase ABC. Efficiency of enzyme treatment was quantified using dimethylmethylene blue assay. Removal of at least 79% of the GAGs did not significantly change the tendon modulus, relative energy dissipation, peak stress, or peak strain. The effect of deformation rate was not modulated by the treatment either, indicating no effect on viscosity. These results suggest that GAGs cannot be considered mediators of tensile force transmission in the human patellar tendon, and as such, force transmission must either take place through other matrix components or the fibrils must be mechanically continuous at least to the tested length of 7 mm.
Original languageEnglish
JournalConnective Tissue Research
Volume52
Issue number5
Pages (from-to)415-21
Number of pages7
ISSN0300-8207
DOIs
Publication statusPublished - Oct 2011

Fingerprint

Dive into the research topics of 'Tensile force transmission in human patellar tendon fascicles is not mediated by glycosaminoglycans'. Together they form a unique fingerprint.

Cite this