Abstract
Stochastic differential equations have been shown useful in describing random continuous time processes. Biomedical experiments often imply repeated measurements on a series of experimental units and differences between units can be represented by incorporating random effects into the model. When both system noise and random effects are considered, stochastic differential mixed-effects models ensue. This class of models enables the simultaneous representation of randomness in the dynamics of the phenomena being considered and variability between experimental units, thus providing a powerful modelling tool with immediate applications in biomedicine and pharmacokinetic/pharmacodynamic studies. In most cases the likelihood function is not available, and thus maximum likelihood estimation of the unknown parameters is not possible. Here we propose a computationally fast approximated maximum likelihood procedure for the estimation of the non-random parameters and the random effects. The method is evaluated on simulations from some famous diffusion processes and on real data sets.
Original language | English |
---|---|
Journal | Scandinavian Journal of Statistics |
Volume | 37 |
Pages (from-to) | 67-90 |
Number of pages | 24 |
ISSN | 0303-6898 |
DOIs | |
Publication status | Published - Mar 2010 |