Abstract
Stochastic differential equations have been shown useful in describing random continuous time processes. Biomedical experiments often imply repeated measurements on a series of experimental units and differences between units can be represented by incorporating random effects into the model. When both system noise and random effects are considered, stochastic differential mixed-effects models ensue. This class of models enables the simultaneous representation of randomness in the dynamics of the phenomena being considered and variability between experimental units, thus providing a powerful modelling tool with immediate applications in biomedicine and pharmacokinetic/pharmacodynamic studies. In most cases the likelihood function is not available, and thus maximum likelihood estimation of the unknown parameters is not possible. Here we propose a computationally fast approximated maximum likelihood procedure for the estimation of the non-random parameters and the random effects. The method is evaluated on simulations from some famous diffusion processes and on real data sets.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Scandinavian Journal of Statistics |
Vol/bind | 37 |
Sider (fra-til) | 67-90 |
Antal sider | 24 |
ISSN | 0303-6898 |
DOI | |
Status | Udgivet - mar. 2010 |