Abstract
We show here, by means of evolutionary spectral analysis and synthesis of cytosolic Ca2+ ([Ca2+]c) spiking observed at the single cell level using digital imaging fluorescence microscopy of fura-2-loaded mouse cerebellar granule cells in culture, that [Ca2+]c spiking can be resolved into evolutionary spectra of a characteristic set of frequencies. Non-delayed small spikes on top of sustained [Ca2+]c were synthesized by a main component frequency, 0.132+/-0.012 Hz, showing its maximal amplitude in phase with the start of depolarization (25 mM KCI) combined with caffeine (10 mM) application. Delayed complex responses of large [Ca2+]c spiking observed in cells from a different set of cultures were synthesized by a set of frequencies within the range 0.018-0.117 Hz. Differential frequency patterns are suggested as characteristics of the [Ca2+]c spiking responses of neurons under different conditions.
Original language | English |
---|---|
Journal | NeuroReport |
Volume | 9 |
Issue number | 4 |
Pages (from-to) | 721-4 |
Number of pages | 4 |
ISSN | 0959-4965 |
Publication status | Published - 1998 |