Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria

Lasse Skibsbye, Claire Poulet, Jonas Goldin Diness, Bo Hjorth Bentzen, Lei Yuan, Utz Kappert, Klaus Matschke, Erich Wettwer, Ursula Ravens, Morten Grunnet, Torsten Christ, Thomas Jespersen

112 Citations (Scopus)

Abstract

AIMS: Small-conductance calcium-activated potassium (SK) channels are expressed in the heart of various species, including humans. The aim of the present study was to address whether SK channels play a functional role in human atria.

METHODS AND RESULTS: Quantitative real-time PCR analyses showed higher transcript levels of SK2 and SK3 than that of the SK1 subtype in human atrial tissue. SK2 and SK3 were reduced in chronic atrial fibrillation (AF) compared with sinus rhythm (SR) patients. Immunohistochemistry using confocal microscopy revealed widespread expression of SK2 in atrial myocytes. Two SK channel inhibitors (NS8593 and ICAGEN) were tested in heterologous expression systems revealing ICAGEN as being highly selective for SK channels, while NS8593 showed less selectivity for these channels. In isolated atrial myocytes from SR patients, both inhibitors decreased inwardly rectifying K(+) currents by ∼15% and prolonged action potential duration (APD), but no effect was observed in myocytes from AF patients. In trabeculae muscle strips from right atrial appendages of SR patients, both compounds increased APD and effective refractory period, and depolarized the resting membrane potential, while only NS8593 induced these effects in tissue from AF patients. SK channel inhibition did not alter any electrophysiological parameter in human interventricular septum tissue.

CONCLUSIONS: SK channels are present in human atria where they participate in repolarization. SK2 and SK3 were down-regulated and had reduced functional importance in chronic AF. As SK current was not found to contribute substantially to the ventricular AP, pharmacological inhibition of SK channels may be a putative atrial-selective target for future antiarrhythmic drug therapy.

Original languageEnglish
JournalCardiovascular Research
Volume103
Issue number1
Pages (from-to)156-67
Number of pages12
ISSN0008-6363
DOIs
Publication statusPublished - 1 Jul 2014

Keywords

  • 1-Naphthylamine
  • Action Potentials
  • Atrial Fibrillation
  • Heart Atria
  • Heart Ventricles
  • Humans
  • Membrane Potentials
  • Myocardium
  • Myocytes, Cardiac
  • Pyridines
  • RNA, Messenger
  • Small-Conductance Calcium-Activated Potassium Channels
  • Thiazoles

Fingerprint

Dive into the research topics of 'Small-conductance calcium-activated potassium (SK) channels contribute to action potential repolarization in human atria'. Together they form a unique fingerprint.

Cite this