Simulation of PSII-operating efficiency from chlorophyll fluorescence in response to light and temperature in chrysanthemum (Dendranthema grandiflora) using a multilayer leaf model

E. Janka*, O. Körner, Eva Rosenqvist, C.-O. Ottosen

*Corresponding author for this work
2 Citations (Scopus)

Abstract

Chlorophyll fluorescence serves as a proxy photosynthesis measure under different climatic conditions. The objective of the study was to predict PSII quantum yield using greenhouse microclimate data to monitor plant conditions under various climates. Multilayer leaf model was applied to model fluorescence emission from actinic light-adapted (F') leaves, maximum fluorescence from light-adapted (Fm') leaves, PSII-operating efficiency (Fq /Fm ), and electron transport rate (ETR). A linear function was used to approximate F' from several measurements under constant and variable light conditions. Model performance was evaluated by comparing the differences between the root mean square error (RMSE) and mean square error (MSE) of observed and predicted values. The model exhibited predictive success for Fq /Fm and ETR under different temperature and light conditions with lower RMSE and MSE. However, prediction of F' and Fm was poor due to a weak relationship under constant (R2 = 0.48) and variable (R2 = 0.35) light.

Original languageEnglish
JournalPhotosynthetica
Volume56
Issue number2
Pages (from-to)633-640
Number of pages8
ISSN0300-3604
DOIs
Publication statusPublished - 1 Jun 2018

Fingerprint

Dive into the research topics of 'Simulation of PSII-operating efficiency from chlorophyll fluorescence in response to light and temperature in chrysanthemum (Dendranthema grandiflora) using a multilayer leaf model'. Together they form a unique fingerprint.

Cite this