Abstract
Chlorophyll fluorescence serves as a proxy photosynthesis measure under different climatic conditions. The objective of the study was to predict PSII quantum yield using greenhouse microclimate data to monitor plant conditions under various climates. Multilayer leaf model was applied to model fluorescence emission from actinic light-adapted (F') leaves, maximum fluorescence from light-adapted (Fm') leaves, PSII-operating efficiency (Fq ′/Fm ′), and electron transport rate (ETR). A linear function was used to approximate F' from several measurements under constant and variable light conditions. Model performance was evaluated by comparing the differences between the root mean square error (RMSE) and mean square error (MSE) of observed and predicted values. The model exhibited predictive success for Fq ′/Fm ′and ETR under different temperature and light conditions with lower RMSE and MSE. However, prediction of F' and Fm ′was poor due to a weak relationship under constant (R2 = 0.48) and variable (R2 = 0.35) light.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Photosynthetica |
Vol/bind | 56 |
Udgave nummer | 2 |
Sider (fra-til) | 633-640 |
Antal sider | 8 |
ISSN | 0300-3604 |
DOI | |
Status | Udgivet - 1 jun. 2018 |