Abstract
Undesired biofilm formation is a major concern in many areas. In the present study, we investigated biofilm-inhibiting properties of a silver-palladium surface that kills bacteria by generating microelectric fields and electrochemical redox processes. For evaluation of the biofilm inhibition efficacy and study of the biofilm inhibition mechanism, the silver-sensitive Escherichia coli J53 and the silver-resistant E. coli J53[pMG101] strains were used as model organisms, and batch and flow chamber setups were used as model systems. In the case of the silver-sensitive strain, the silver-palladium surfaces killed the bacteria and prevented biofilm formation under conditions of low or high bacterial load. In the case of the silver-resistant strain, the silver-palladium surfaces killed surface-associated bacteria and prevented biofilm formation under conditions of low bacterial load, whereas under conditions of high bacterial load, biofilm formation occurred upon a layer of surface-associated dead bacteria.
Original language | English |
---|---|
Journal | Applied and Environmental Microbiology |
Volume | 75 |
Issue number | 6 |
Pages (from-to) | 1674-8 |
Number of pages | 5 |
ISSN | 0099-2240 |
DOIs | |
Publication status | Published - 2009 |