Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) are secreted postprandially and contribute importantly to postprandial glucose tolerance. In this study, we assessed the individual and combined contributions of endogenous GIP and GLP-1 to the postprandial changes in glucose and glucoregulatory hormones using the novel GIP receptor antagonist GIP(3-30)NH2 and the well-established GLP-1 receptor antagonist exendin(9-39)NH2. During 4-h oral glucose tolerance tests (75 g) combined with an ad libitum meal test, 18 healthy men received on four separate days in randomized, double-blinded order intravenous infusions of A) GIP(3-30)NH2 (800 pmol/kg/min) plus exendin(9-39) NH2 (0–20 min: 1,000 pmol/kg/min; 20–240 min: 450 pmol/kg/min), B) GIP(3-30)NH2, C) exendin(9-39) NH2, and D) saline, respectively. Glucose excursions were significantly higher during A than during B, C, and D, while glucose excursions during B were higher than during C and D. Insulin secretion (assessed by C-peptide/glucose ratio) was reduced by 37 6 16% (A), 30 6 17% (B), and 8.6 6 16% (C) compared with D (mean 6 SD). A and C resulted in higher glucagon levels and faster gastric emptying. In conclusion, endogenous GIP affects postprandial plasma glucose excursions and insulin secretion more than endogenous GLP-1, but the hormones contribute additively to postprandial glucose regulation in healthy individuals.
Original language | English |
---|---|
Journal | Diabetes |
Volume | 68 |
Issue number | 3 |
Pages (from-to) | 906-917 |
ISSN | 0012-1797 |
DOIs | |
Publication status | Published - 2019 |