TY - JOUR
T1 - Seagrass rhizosphere microenvironment alters plant-associated microbial community composition
AU - Brodersen, Kasper Elgetti
AU - Siboni, Nashshon
AU - Nielsen, Daniel A.
AU - Pernice, Mathieu
AU - Ralph, Peter J.
AU - Seymour, Justin
AU - Kühl, Michael
PY - 2018/8
Y1 - 2018/8
N2 - The seagrass rhizosphere harbors dynamic microenvironments, where plant-driven gradients of O2 and dissolved organic carbon form microhabitats that select for distinct microbial communities. To examine how seagrass-mediated alterations of rhizosphere geochemistry affect microbial communities at the microscale level, we applied 16S rRNA amplicon sequencing of artificial sediments surrounding the meristematic tissues of the seagrass Zostera muelleri together with microsensor measurements of the chemical conditions at the basal leaf meristem (BLM). Radial O2 loss (ROL) from the BLM led to ∼ 300 µm thick oxic microzones, wherein pronounced decreases in H2S and pH occurred. Significantly higher relative abundances of sulphate-reducing bacteria were observed around the meristematic tissues compared to the bulk sediment, especially around the root apical meristems (RAM; ∼ 57% of sequences). Within oxic microniches, elevated abundances of sulphide-oxidizing bacteria were observed compared to the bulk sediment and around the RAM. However, sulphide oxidisers within the oxic microzone did not enhance sediment detoxification, as rates of H2S re-oxidation here were similar to those observed in a pre-sterilized root/rhizome environment. Our results provide novel insights into how chemical and microbiological processes in the seagrass rhizosphere modulate plant-microbe interactions potentially affecting seagrass health.
AB - The seagrass rhizosphere harbors dynamic microenvironments, where plant-driven gradients of O2 and dissolved organic carbon form microhabitats that select for distinct microbial communities. To examine how seagrass-mediated alterations of rhizosphere geochemistry affect microbial communities at the microscale level, we applied 16S rRNA amplicon sequencing of artificial sediments surrounding the meristematic tissues of the seagrass Zostera muelleri together with microsensor measurements of the chemical conditions at the basal leaf meristem (BLM). Radial O2 loss (ROL) from the BLM led to ∼ 300 µm thick oxic microzones, wherein pronounced decreases in H2S and pH occurred. Significantly higher relative abundances of sulphate-reducing bacteria were observed around the meristematic tissues compared to the bulk sediment, especially around the root apical meristems (RAM; ∼ 57% of sequences). Within oxic microniches, elevated abundances of sulphide-oxidizing bacteria were observed compared to the bulk sediment and around the RAM. However, sulphide oxidisers within the oxic microzone did not enhance sediment detoxification, as rates of H2S re-oxidation here were similar to those observed in a pre-sterilized root/rhizome environment. Our results provide novel insights into how chemical and microbiological processes in the seagrass rhizosphere modulate plant-microbe interactions potentially affecting seagrass health.
U2 - 10.1111/1462-2920.14245
DO - 10.1111/1462-2920.14245
M3 - Journal article
C2 - 29687545
SN - 1462-2912
VL - 20
SP - 2854
EP - 2864
JO - Environmental Microbiology
JF - Environmental Microbiology
IS - 8
ER -