TY - JOUR
T1 - Restricting glycolysis impairs brown adipocyte glucose and oxygen consumption
AU - Winther, Sally
AU - Isidor, Marie Sophie
AU - Basse, Astrid Linde
AU - Skjoldborg, Nina
AU - Cheung, Amanda
AU - Quistorff, Bjørn
AU - Hansen, Jacob B.
PY - 2018/3
Y1 - 2018/3
N2 - During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using siRNA-mediated knockdown in mature adipocytes, we explored the effect of glucose transporters and glycolytic enzymes on brown adipocyte functions such as consumption of glucose and oxygen. Basal oxygen consumption in brown adipocytes was equally dependent on glucose and fatty acid oxidation, whereas isoproterenol (ISO)-stimulated respiration was fueled mainly by fatty acids, with a significant contribution from glucose oxidation. Knockdown of glucose transporters in brown adipocytes not only impaired ISO-stimulated glycolytic flux but also oxygen consumption. Diminishing glycolytic flux by knockdown of the first and final enzyme of glycolysis, i.e., hexokinase 2 (HK2) and pyruvate kinase M (PKM), respectively, decreased glucose uptake and ISO-stimulated oxygen consumption. HK2 knockdown had a more severe effect, which, in contrast to PKM knockdown, could not be rescued by supplementation with pyruvate. Hence, brown adipocytes rely on glucose consumption and glycolytic flux to achieve maximum thermogenic output, with glycolysis likely supporting thermogenesis not only by pyruvate formation but also by supplying intermediates for efferent metabolic pathways.
AB - During thermogenic activation, brown adipocytes take up large amounts of glucose. In addition, cold stimulation leads to an upregulation of glycolytic enzymes. Here we have investigated the importance of glycolysis for brown adipocyte glucose consumption and thermogenesis. Using siRNA-mediated knockdown in mature adipocytes, we explored the effect of glucose transporters and glycolytic enzymes on brown adipocyte functions such as consumption of glucose and oxygen. Basal oxygen consumption in brown adipocytes was equally dependent on glucose and fatty acid oxidation, whereas isoproterenol (ISO)-stimulated respiration was fueled mainly by fatty acids, with a significant contribution from glucose oxidation. Knockdown of glucose transporters in brown adipocytes not only impaired ISO-stimulated glycolytic flux but also oxygen consumption. Diminishing glycolytic flux by knockdown of the first and final enzyme of glycolysis, i.e., hexokinase 2 (HK2) and pyruvate kinase M (PKM), respectively, decreased glucose uptake and ISO-stimulated oxygen consumption. HK2 knockdown had a more severe effect, which, in contrast to PKM knockdown, could not be rescued by supplementation with pyruvate. Hence, brown adipocytes rely on glucose consumption and glycolytic flux to achieve maximum thermogenic output, with glycolysis likely supporting thermogenesis not only by pyruvate formation but also by supplying intermediates for efferent metabolic pathways.
U2 - 10.1152/ajpendo.00218.2017
DO - 10.1152/ajpendo.00218.2017
M3 - Journal article
C2 - 29118013
SN - 0193-1849
VL - 314
SP - E214-E223
JO - American Journal of Physiology - Endocrinology and Metabolism
JF - American Journal of Physiology - Endocrinology and Metabolism
IS - 3
ER -