Proteomic analyses reveal divergent ubiquitylation site patterns in murinetissues

Sebastian A Wagner, Petra Beli, Brian T Weinert, Christian Friedhold Schölz, Christian D Kelstrup, Clifford Young, Michael Lund Nielsen, Jesper V Olsen, Cord Brakebusch, Chuna Ram Choudhary

189 Citations (Scopus)

Abstract

Posttranslational modifications of proteins increase the complexity of the cellular proteome andenable rapid regulation of protein functions in response to environmental changes. Proteinubiquitylation is a central regulatory posttranslational modification that controls numerousbiological processes including proteasomal degradation of proteins, DNA damage repair and innateimmune responses. Here we combine high-resolution mass spectrometry with single-stepimmunoenrichment of di-glycine modified peptides for mapping of endogenous putativeubiquitylation sites in murine tissues. We identify more than 20,000 unique ubiquitylation sites onproteins involved in diverse biological processes. Our data reveals that ubiquitylation regulates coresignaling pathways common for each of the studied tissues. In addition, we discover thatubiquitylation regulates tissue-specific signaling networks. Many tissue-specific ubiquitylation siteswere obtained from brain highlighting the complexity and unique physiology of this organ. Wefurther demonstrate that different di-glycine-lysine-specific monoclonal antibodies exhibit sequencepreferences, and that their complementary use increases the depth of ubiquitylation site analysis,thereby providing a more unbiased view of protein ubiquitylation.
Original languageEnglish
JournalMolecular & Cellular Proteomics
ISSN1535-9484
DOIs
Publication statusPublished - Dec 2012

Fingerprint

Dive into the research topics of 'Proteomic analyses reveal divergent ubiquitylation site patterns in murinetissues'. Together they form a unique fingerprint.

Cite this