TY - JOUR
T1 - Previously infected chimpanzees are not consistently protected against reinfection or persistent infection after reexposure to the identical hepatitis C virus strain.
AU - Bukh, Jens
AU - Thimme, Robert
AU - Meunier, Jean-Christophe
AU - Faulk, Kristina
AU - Spangenberg, Hans Christian
AU - Chang, Kyong-Mi
AU - Satterfield, William
AU - Chisari, Francis V
AU - Purcell, Robert H
PY - 2008
Y1 - 2008
N2 - Protective immunity after resolved hepatitis C virus (HCV) infection has been reported. However, the breadth of this immunity has remained controversial, and the role of neutralizing antibodies has not been well-defined. In the present study, two chimpanzees (CH96A008 and CH1494) with resolved monoclonal H77C (genotype 1a) infection were rechallenged with low-dose homologous H77C virus about 12 months after viral clearance; CH96A008 became persistently infected, and CH1494 had transient viremia lasting 2 weeks. CH1494 was subsequently either partially or completely protected following five homologous rechallenges with monoclonal H77C or polyclonal H77 and after six heterologous rechallenges with HC-J4 (genotype 1b) or HC-J6 (genotype 2a) viruses. Subsequently, a final challenge with H77C resulted in persistent HCV infection. In both chimpanzees, serum neutralizing antibodies against retroviral pseudoparticles bearing the H77C envelope proteins were not detected during the initial infection or during rechallenge. However, anamnestic cellular immune responses developed during the initial homologous rechallenge, in particular in CH96A008, which developed a persistent infection. Polyprotein sequences of viruses recovered from CH1494 after the two homologous rechallenges that resulted in transient viremia were identical with the H77C virus. In contrast, the polyprotein sequences of viruses recovered from both chimpanzees after homologous rechallenge resulting in persistent infection had numerous changes. These findings have important implications for our understanding of immunity against HCV; even in the best-case scenario with autologous rechallenge, low-level viral persistence was seen in the presence of primed T-cell responses.
AB - Protective immunity after resolved hepatitis C virus (HCV) infection has been reported. However, the breadth of this immunity has remained controversial, and the role of neutralizing antibodies has not been well-defined. In the present study, two chimpanzees (CH96A008 and CH1494) with resolved monoclonal H77C (genotype 1a) infection were rechallenged with low-dose homologous H77C virus about 12 months after viral clearance; CH96A008 became persistently infected, and CH1494 had transient viremia lasting 2 weeks. CH1494 was subsequently either partially or completely protected following five homologous rechallenges with monoclonal H77C or polyclonal H77 and after six heterologous rechallenges with HC-J4 (genotype 1b) or HC-J6 (genotype 2a) viruses. Subsequently, a final challenge with H77C resulted in persistent HCV infection. In both chimpanzees, serum neutralizing antibodies against retroviral pseudoparticles bearing the H77C envelope proteins were not detected during the initial infection or during rechallenge. However, anamnestic cellular immune responses developed during the initial homologous rechallenge, in particular in CH96A008, which developed a persistent infection. Polyprotein sequences of viruses recovered from CH1494 after the two homologous rechallenges that resulted in transient viremia were identical with the H77C virus. In contrast, the polyprotein sequences of viruses recovered from both chimpanzees after homologous rechallenge resulting in persistent infection had numerous changes. These findings have important implications for our understanding of immunity against HCV; even in the best-case scenario with autologous rechallenge, low-level viral persistence was seen in the presence of primed T-cell responses.
U2 - 10.1128/JVI.00142-08
DO - 10.1128/JVI.00142-08
M3 - Journal article
C2 - 18550671
SN - 0022-538X
VL - 82
SP - 8183
EP - 8195
JO - Journal of Virology
JF - Journal of Virology
IS - 16
ER -