Abstract
Tissue growth has to be carefully controlled to generate well-functioning organs. MicroRNAs are small non-coding RNAs that modulate the activity of target genes and play a pivotal role in animal development. Understanding the functions of microRNAs in development requires the identification of their target genes. Here, we find that miR-8, a conserved microRNA in the miR-200 family, controls tissue growth and homeostasis in the Drosophila wing imaginal disc. Upregulation of miR-8 causes the repression of Yorkie, the effector of the Hippo pathway in Drosophila, and reduces tissue size. Remarkably, co-expression of Yorkie and miR-8 causes the formation of neoplastic tumors. We show that upregulation of miR-8 represses the growth inhibitor brinker, and depletion of brinker cooperates with Yorkie in the formation of neoplastic tumors. Hence, miR-8 modulates a positive growth regulator, Yorkie, and a negative growth regulator, brinker. Deregulation of this network can result in the loss of tissue homeostasis and the formation of tumors.
Original language | English |
---|---|
Article number | dev153817 |
Journal | Development (Cambridge) |
Volume | 145 |
Issue number | 13 |
ISSN | 0950-1991 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Brinker
- Cancer
- Drosophila
- Hippo pathway
- MicroRNA
- miR-8