Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain

Petrine Wellendorph, Signe Høg, Jeremy R Greenwood, Anne de Lichtenberg, Birgitte Nielsen, Bente Frølund, Lotte Brehm, Rasmus P Clausen, Hans Bräuner-Osborne

    37 Citations (Scopus)

    Abstract

    Gamma-hydroxybutyrate (GHB) is a psychotropic compound endogenous to the brain. Despite its potentially great physiological significance, its exact molecular mechanism of action is unknown. GHB is a weak agonist at GABA(B) receptors, but there is also evidence of specific GHB receptor sites, the molecular cloning of which remains a challenge. Ligands with high affinity and specificity for the reported GHB binding site are needed for pharmacological dissection of the GHB and GABA(B) effects and for mapping the structural requirements of the GHB receptor-ligand interactions. For this purpose, we have synthesized and assayed three conformationally restricted GHB analogs for binding against the GHB-specific ligand [3H]NCS-382 [(E,RS)-(6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene-)acetic acid] in rat brain homogenate. The cyclohexene and cyclopentene analogs, 3-hydroxycyclohex-1-enecarboxylic acid [(RS)-HOCHCA] and 3-hydroxycyclopent-1-enecarboxylic acid [(RS)-HOCPCA], were found to be high-affinity GHB ligands, with IC50 values in the nanomolar range, and had 9 and 27 times, respectively, higher affinity than GHB. The stereo-selectively synthesized R,R-isomer of the trans-cyclopropyl GHB analog, HOCPrCA, proved to have 10-fold higher affinity than its enantiomer. Likewise, the R-enantiomers of HOCHCA and HOCPCA selectively inhibited [3H]NCS-382 binding. The best inhibitor of these, (R)-HOCPCA, has an affinity 39 times higher than GHB and is thus among the best GHB ligands reported to date. Neither of the cycloalkenes showed any affinity (IC50 > 1 mM) for GABA(A) or GABA(B) receptors. These compounds show excellent potential as lead structures and novel tools for studying specific GHB receptor-mediated pharmacology.
    Original languageEnglish
    JournalJournal of Pharmacology and Experimental Therapeutics
    Volume315
    Issue number1
    Pages (from-to)346-51
    ISSN0022-3565
    DOIs
    Publication statusPublished - Oct 2005

    Keywords

    • Animals
    • Benzocycloheptenes
    • Binding Sites
    • Brain
    • Male
    • Molecular Conformation
    • Rats
    • Rats, Sprague-Dawley
    • Receptors, GABA
    • Sodium Oxybate

    Fingerprint

    Dive into the research topics of 'Novel cyclic gamma-hydroxybutyrate (GHB) analogs with high affinity and stereoselectivity of binding to GHB sites in rat brain'. Together they form a unique fingerprint.

    Cite this