Abstract
Early understanding of the pharmacokinetics and metabolic patterns of new drug candidates is essential for selection of optimal candidates to move further in to the drug development process. In vitro methodologies can be used to investigate metabolic patterns, but in general, they lack several aspects of the whole-body physiology. In contrast, the complexity of intact animals does not necessarily allow individual processes to be identified. Animal models lacking a major excretion organ can be used to investigate these individual metabolic processes. Animal models of nephrectomy and hepatectomy have considerable potential as tools in preclinical pharmacokinetics to assess organs of importance for drug clearance and thereby knowledge of potential metabolic processes to manipulate to improve pharmacokinetic properties of the molecules. Detailed knowledge of anatomy and surgical techniques is crucial to successfully establish the models, and a well-balanced anaesthesia and adequate monitoring of the animals are also of major importance. An obvious drawback of animal models lacking an organ is the disruption of normal homoeostasis and the induction of dramatic and ultimately mortal systemic changes in the animals. Refining of the surgical techniques and the post-operative supportive care of the animals can increase the value of these models by minimizing the systemic changes induced, and thorough validation of nephrectomy and hepatectomy models is needed before use of such models as a tool in preclinical pharmacokinetics. The present MiniReview discusses pros and cons of the available techniques associated with establishing nephrectomy and hepatectomy models.
Original language | English |
---|---|
Journal | Basic & Clinical Pharmacology & Toxicology Online |
Volume | 113 |
Issue number | 2 |
Pages (from-to) | 75-86 |
Number of pages | 12 |
ISSN | 1742-7843 |
DOIs | |
Publication status | Published - Aug 2013 |