Abstract
Probiotics are bacteria used in the food industry due to their potential health benefits. In this study, the plasma membrane of the probiotic Lactobacillus acidophilus La-5 was investigated using state-of-the-art high-resolution shotgun lipidomics. Comparisons of the lipidome of the plasma membrane were done after altering the fatty acid composition by supplementing L. acidophilus La-5 with saturated, mono-, di- and tri-unsaturated fatty acids during fermentation. The plasma membrane with the highest degree of saturation resulted in a lipid composition with the highest proportion of cardiolipin (CL) and lowest proportion of monolysocardiolipin (MLCL). No significant changes were found for other lipid classes. The bacteria grown with di- and tri-unsaturated fatty acids were expected to have more unsaturated plasma membranes than bacteria grown with mono-unsaturated fatty acids. This was also the case for MLCL, but the numbers of double bonds for CL were quite similar for these three samples. The results indicate that L. acidophilus La-5 possesses a molecular mechanism for remodelling and optimizing the fatty acid composition of CL and MLCL species and the molar ratio of CL and MLCL. This study contributes new knowledge on the previously uninvestigated lipidome of L. acidophilus La-5.
Original language | English |
---|---|
Journal | Microbiology |
Volume | 161 |
Issue number | 10 |
Pages (from-to) | 1990-1998 |
Number of pages | 9 |
ISSN | 1350-0872 |
DOIs | |
Publication status | Published - Oct 2015 |