Minoration de la hauteur de Néron-Tate sur les surfaces abéliennes

4 Citations (Scopus)
566 Downloads (Pure)

Abstract

This paper contains results concerning a conjecture made by Lang and Silverman, predicting a lower bound for the canonical height on abelian varieties of dimension 2 over number fields. The method used here is a local height decomposition. We derive as corollaries uniform bounds on the number of torsion points on families of abelian surfaces and on the number of rational points on families of genus 2 curves.

Original languageEnglish
Article number61-99
JournalManuscripta Mathematica
Volume142
ISSN0025-2611
DOIs
Publication statusPublished - Sept 2013
Externally publishedYes

Fingerprint

Dive into the research topics of 'Minoration de la hauteur de Néron-Tate sur les surfaces abéliennes'. Together they form a unique fingerprint.

Cite this