Minoration de la hauteur de Néron-Tate sur les surfaces abéliennes

4 Citationer (Scopus)
566 Downloads (Pure)

Abstract

This paper contains results concerning a conjecture made by Lang and Silverman, predicting a lower bound for the canonical height on abelian varieties of dimension 2 over number fields. The method used here is a local height decomposition. We derive as corollaries uniform bounds on the number of torsion points on families of abelian surfaces and on the number of rational points on families of genus 2 curves.

OriginalsprogEngelsk
Artikelnummer61-99
TidsskriftManuscripta Mathematica
Vol/bind142
ISSN0025-2611
DOI
StatusUdgivet - sep. 2013
Udgivet eksterntJa

Fingeraftryk

Dyk ned i forskningsemnerne om 'Minoration de la hauteur de Néron-Tate sur les surfaces abéliennes'. Sammen danner de et unikt fingeraftryk.

Citationsformater