Mapping the universe of RNA tetraloop folds

Sandro Bottaro*, Kresten Lindorff-Larsen

*Corresponding author for this work
19 Citations (Scopus)

Abstract

We report a map of RNA tetraloop conformations constructed by calculating pairwise distances among all experimentally determined four-nucleotide hairpin loops. Tetraloops with similar structures are clustered together and, as expected, the two largest clusters are the canonical GNRA and UNCG folds. We identify clusters corresponding to known tetraloop folds such as GGUG, RNYA, AGNN, and CUUG. These clusters are represented in a simple two-dimensional projection that recapitulates the relationship among the different folds. The cluster analysis also identifies 20 novel tetraloop folds that are peculiar to specific positions in ribosomal RNAs and that are stabilized by tertiary interactions. In our RNA tetraloop database we find a significant number of non-GNRA and non-UNCG sequences adopting the canonical GNRA and UNCG folds. Conversely, we find a significant number of GNRA and UNCG sequences adopting non-GNRA and non-UNCG folds. Our analysis demonstrates that there is not a simple one-to-one, but rather a many-to-many mapping between tetraloop sequence and tetraloop fold.

Original languageEnglish
JournalBiophysical Journal
Volume113
Issue number2
Pages (from-to)257-267
Number of pages11
ISSN0006-3495
DOIs
Publication statusPublished - 25 Jul 2017

Fingerprint

Dive into the research topics of 'Mapping the universe of RNA tetraloop folds'. Together they form a unique fingerprint.

Cite this