Mapping the universe of RNA tetraloop folds

Sandro Bottaro*, Kresten Lindorff-Larsen

*Corresponding author af dette arbejde
19 Citationer (Scopus)

Abstract

We report a map of RNA tetraloop conformations constructed by calculating pairwise distances among all experimentally determined four-nucleotide hairpin loops. Tetraloops with similar structures are clustered together and, as expected, the two largest clusters are the canonical GNRA and UNCG folds. We identify clusters corresponding to known tetraloop folds such as GGUG, RNYA, AGNN, and CUUG. These clusters are represented in a simple two-dimensional projection that recapitulates the relationship among the different folds. The cluster analysis also identifies 20 novel tetraloop folds that are peculiar to specific positions in ribosomal RNAs and that are stabilized by tertiary interactions. In our RNA tetraloop database we find a significant number of non-GNRA and non-UNCG sequences adopting the canonical GNRA and UNCG folds. Conversely, we find a significant number of GNRA and UNCG sequences adopting non-GNRA and non-UNCG folds. Our analysis demonstrates that there is not a simple one-to-one, but rather a many-to-many mapping between tetraloop sequence and tetraloop fold.

OriginalsprogEngelsk
TidsskriftBiophysical Journal
Vol/bind113
Udgave nummer2
Sider (fra-til)257-267
Antal sider11
ISSN0006-3495
DOI
StatusUdgivet - 25 jul. 2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Mapping the universe of RNA tetraloop folds'. Sammen danner de et unikt fingeraftryk.

Citationsformater