Abstract
The past couple of years have seen several novel X-ray structures of 7 transmembrane (7TM) receptors in complex with antagonists and even with a peptide fragment of a G protein. These structures demonstrate that the main ligand-binding pocket in 7TM receptors is like a funnel with a partial 'lid' in which extracellular loop 2b, in particular, functions as a gating element. Small-molecule antagonists and inverse agonists bind in very different modes: some very deeply and others more superficially, even reaching out above the transmembranes. Several highly conserved residues seem to function as micro-switches of which ArgIII:26 (Arg3.50) in its active conformation interacts directly with the G protein. These micro-switches together with a hydrogen-bond network between conserved polar residues and structural water molecules are proposed to constitute an extended allosteric interface between the domains (i.e. especially TM-VI), which performs the large, global toggle switch movements connecting ligand binding with intracellular signaling.
Original language | English |
---|---|
Journal | TIPS - Trends in Pharmacological Sciences |
Volume | 30 |
Issue number | 5 |
Pages (from-to) | 249-59 |
Number of pages | 10 |
ISSN | 0165-6147 |
DOIs | |
Publication status | Published - 2009 |