Latent manganese deficiency increases transpiration in barley (Hordeum vulgare)

Christopher Alan Hebbern, Kristian Holst Laursen, Anne Hald Ladegaard, Sidsel Birkelund Schmidt, Pai Rosager Pedas, Dan Bruhn, Jan Kofod Schjørring, Dvora-Laio Wulfsohn, Søren Husted

    54 Citations (Scopus)

    Abstract

    To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements revealed that the quantum yield efficiency of PSII (Fv/Fm) was reduced from 0.83 in Mn-sufficient control plants to below 0.5 in Mn-starved plants. Leaf Mn concentrations declined from 30 to 7 µg Mn g-1 dry weight in control and Mn-starved plants, respectively. Mn-starved plants had up to four-fold higher transpiration than control plants. Stomatal closure and opening upon light/dark transitions took place at the same rate in both Mn treatments, but the nocturnal leaf conductance for water vapour was still twice as high in Mn-starved plants compared with the control. The observed increase in transpiration was substantiated by 13C-isotope discrimination analysis and gravimetric measurement of the water consumption, showing significantly lower water use efficiency in Mn-starved plants. The extractable wax content of leaves of Mn-starved plants was approximately 40% lower than that in control plants, and it is concluded that the increased leaf conductance and higher transpirational water loss are correlated with a reduction in the epicuticular wax layer under Mn deficiency.
    Original languageEnglish
    JournalPhysiologia Plantarum : An International Journal for Plant Biology
    Volume135
    Issue number3
    Pages (from-to)307-316
    Number of pages10
    ISSN0031-9317
    DOIs
    Publication statusPublished - 2009

    Cite this