Large recurrent microdeletions associated with schizophrenia

H. Stefansson, D. Rujescu, S. Cichon, O.P. Pietilainen, A. Ingason, S. Steinberg, R. Fossdal, E. Sigurdsson, T. Sigmundsson, J.E. Buizer-Voskamp, T. Hansen, K.D. Jakobsen, P. Muglia, C. Francks, P.M. Matthews, A. Gylfason, B.V. Halldorsson, D. Gudbjartsson, T.E. Thorgeirsson, A. SigurdssonA. Jonasdottir, A. Jonasdottir, A. Bjornsson, S. Mattiasdottir, T. Blondal, M. Haraldsson, B.B. Magnusdottir, I. Giegling, H.J. Moller, A. Hartmann, K.V. Shianna, D. Ge, A.C. Need, C. Crombie, G. Fraser, N. Walker, J. Lonnqvist, J. Suvisaari, A. Tuulio-Henriksson, T. Paunio, T. Toulopoulou, E. Bramon, Forti M. Di, August Gabriel Wang, H. Ullum, Jes Olesen, Thomas Werge, August G Wang, Henrik Ullum, Jes Olesen, GROUP

    1344 Citations (Scopus)

    Abstract

    Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.
    Original languageEnglish
    JournalNature Study
    Volume455
    Issue number7210
    Pages (from-to)232-6
    Number of pages5
    ISSN0028-0860
    DOIs
    Publication statusPublished - 2008

    Fingerprint

    Dive into the research topics of 'Large recurrent microdeletions associated with schizophrenia'. Together they form a unique fingerprint.

    Cite this