TY - JOUR
T1 - Insulin stimulation regulates AS160 and TBC1D1 phosphorylation sites in human skeletal muscle
AU - Middelbeek, R J W
AU - Chambers, M A
AU - Tantiwong, P
AU - Treebak, Jonas Thue
AU - An, D
AU - Hirshman, M F
AU - Musi, N
AU - Goodyear, L J
PY - 2013/6
Y1 - 2013/6
N2 - INTRODUCTION: Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPaseactivating proteins AS160 and TBC1D1 is critical for GLUT4 translocation facilitating glucose uptake, but their regulation in human skeletal muscle is not well understood. METHODS: Here, lean, obese and T2D subjects underwent a euglycemic-hyperinsulinemic clamp, and vastus lateralis muscle biopsies were obtained before, and at 30 and 180 min post insulin infusion. RESULTS: Obese and T2D subjects had higher body mass indexes and fasting insulin concentrations, and T2D subjects showed insulin resistance. Consistent with the clamp findings, T2D subjects had impaired insulin-stimulated phosphorylation of AS160 Thr642, a site previously shown to be important in glucose uptake in rodents. Interestingly, insulin-stimulated phosphorylation of TBC1D1 Thr590, a site shown to be regulated by insulin in rodents, was only increased in T2D subjects, although the functional significance of this difference is unknown. CONCLUSION: These data show that insulin differentially regulates AS160 and TBC1D1 phosphorylation in human skeletal muscle. Impaired insulin-stimulated glucose uptake in T2D subjects is accompanied by dysregulation of AS160 and TBC1D1 phosphorylation in skeletal muscle, suggesting that these proteins may regulate glucose uptake in humans.
AB - INTRODUCTION: Individuals with obesity and type 2 diabetes (T2D) are typically insulin resistant, exhibiting impaired skeletal muscle glucose uptake. Animal and cell culture experiments have shown that site-specific phosphorylation of the Rab-GTPaseactivating proteins AS160 and TBC1D1 is critical for GLUT4 translocation facilitating glucose uptake, but their regulation in human skeletal muscle is not well understood. METHODS: Here, lean, obese and T2D subjects underwent a euglycemic-hyperinsulinemic clamp, and vastus lateralis muscle biopsies were obtained before, and at 30 and 180 min post insulin infusion. RESULTS: Obese and T2D subjects had higher body mass indexes and fasting insulin concentrations, and T2D subjects showed insulin resistance. Consistent with the clamp findings, T2D subjects had impaired insulin-stimulated phosphorylation of AS160 Thr642, a site previously shown to be important in glucose uptake in rodents. Interestingly, insulin-stimulated phosphorylation of TBC1D1 Thr590, a site shown to be regulated by insulin in rodents, was only increased in T2D subjects, although the functional significance of this difference is unknown. CONCLUSION: These data show that insulin differentially regulates AS160 and TBC1D1 phosphorylation in human skeletal muscle. Impaired insulin-stimulated glucose uptake in T2D subjects is accompanied by dysregulation of AS160 and TBC1D1 phosphorylation in skeletal muscle, suggesting that these proteins may regulate glucose uptake in humans.
U2 - 10.1038/nutd.2013.13
DO - 10.1038/nutd.2013.13
M3 - Journal article
C2 - 23752133
SN - 2044-4052
VL - 3
SP - e74
JO - Nutrition and Diabetes
JF - Nutrition and Diabetes
IS - 74
ER -