Human embryonic stem cell derived cardiomyocytes self-arrange with areas of different subtypes during differentiation

Maj Linea Vestergaard, Søren Grubb, Karen Koefoed Rasmussen, Zoe Lauren Anderson-Jenkins, Kristina Grunnet-Lauridsen, Kristine Callø, Christian Clausen, Søren Tvorup Christensen, Kjeld Møllgård, Claus Yding Andersen

7 Citations (Scopus)

Abstract

The derivation of functional cardiomyocytes (CMs) from human embryonic stem cells (hESCs) represents a unique way of studying human cardiogenesis, including the development of CM subtypes. In this study, we investigated the development and organization of hESC-derived cardiomyocytes (hESC-CMs) and examined how the expression levels of CM subtypes correspond to human in vivo cardiogenesis. Beating clusters were used to determine cardiac differentiation, which was evaluated by the expression of cardiac genes GATA4 and TNNT2 and subcellular localization of GATA4 and NKX2.5. Sharp electrode recordings to determine action potentials (APs) further revealed spatial organization of intracluster CM subtypes (ie, complex clusters). Nodal-, atrial-, and ventricular-like AP morphologies were detected within distinct regions of complex clusters. The ability of different CM subtypes to self-organize was documented by immunohistochemical analyses and a differential spatial expression of β-III tubulin, myosin light chain 2v (MLC-2V), and α-smooth muscle actin (α-SMA). Furthermore, all hESC-CM subtypes formed expressed primary cilia, which are known to coordinate cellular signaling pathways during cardiomyogenesis and heart development. This study expands the foundation for studying regulatory pathways for spatial and temporal CM differentiation during human cardiogenesis.

Original languageEnglish
JournalStem Cells and Development
Volume26
Issue number21
Pages (from-to)1566-1577
Number of pages12
ISSN1547-3287
DOIs
Publication statusPublished - 1 Nov 2017

Fingerprint

Dive into the research topics of 'Human embryonic stem cell derived cardiomyocytes self-arrange with areas of different subtypes during differentiation'. Together they form a unique fingerprint.

Cite this