Abstract
The effect of glucagon-like peptide 1(7-36) amide [GLP-1(7-36) amide] on membrane potential, whole-cell ATP-sensitive potassium channel (K[ATP]) and Ca2+ currents, cytoplasmic Ca2+ concentration, and exocytosis was explored in single human beta-cells. GLP-1(7-36) amide induced membrane depolarization that was associated with inhibition of whole-cell K(ATP) current. In addition, GLP-1(7-36) amide (and forskolin) produced greater than fourfold potentiation of Ca2+-dependent exocytosis. The latter effect resulted in part (40%) from acceleration of Ca2+ influx through voltage-dependent (L-type) Ca2+ channels. More importantly, GLP-1(7-36) amide (via generation of cyclic AMP and activation of protein kinase A) potentiated exocytosis at a site distal to a rise in the cytoplasmic Ca2+ concentration. Photorelease of caged cAMP produced a two- to threefold potentiation of exocytosis when the cytoplasmic Ca2+ concentrations were clamped at > or =170 nmol/l. The effect of GLP-1(7-36) amide was antagonized by the islet hormone somatostatin. Similar effects on membrane potential, ion conductances, and exocytosis were observed with glucose-dependent insulinotropic polypeptide (GIP), the second major incretin. The present data suggest that the strong insulinotropic action of GLP-1(7-36) amide and GIP in humans results from its interaction with several proximal as well as distal important regulatory steps in the stimulus-secretion coupling.
Original language | English |
---|---|
Journal | Diabetes |
Volume | 47 |
Issue number | 1 |
Pages (from-to) | 57-65 |
Number of pages | 9 |
ISSN | 0012-1797 |
Publication status | Published - 1998 |
Keywords
- Adult
- Calcium
- Calcium Channels
- Cells, Cultured
- Cyclic AMP
- Cyclic AMP-Dependent Protein Kinases
- Exocytosis
- Female
- Forskolin
- Gastric Inhibitory Polypeptide
- Glucagon
- Glucagon-Like Peptide 1
- Glucagon-Like Peptides
- Humans
- Islets of Langerhans
- Male
- Membrane Potentials
- Middle Aged
- Neurotransmitter Agents
- Peptide Fragments
- Potassium Channels
- Somatostatin