DNA Repair Network Analysis Reveals Shieldin as a Key Regulator of NHEJ and PARP Inhibitor Sensitivity

Rajat Gupta, Kumar Somyajit, Takeo Narita, Elina Maskey, Andre Stanlie, Magdalena Kremer, Dimitris Typas, Michael Lammers, Niels Mailand, Andre Nussenzweig, Jiri Lukas, Chunaram Choudhary

    144 Citations (Scopus)

    Abstract

    Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates. Application of proximity-based quantitative proteomics allows the characterization of endogenous protein networks among major DNA damage repair factors and reveals the role of the protein complex shieldin in regulating NHEJ, antibody class switching, and sensitivity to PARP inhibitors.

    Original languageEnglish
    JournalCell
    Volume173
    Issue number4
    Pages (from-to)972-988
    ISSN0092-8674
    DOIs
    Publication statusPublished - 3 May 2018

    Fingerprint

    Dive into the research topics of 'DNA Repair Network Analysis Reveals Shieldin as a Key Regulator of NHEJ and PARP Inhibitor Sensitivity'. Together they form a unique fingerprint.

    Cite this