TY - JOUR
T1 - Dissecting the role of viruses in marine nutrient cycling
T2 - bacterial uptake of D- and L-amino acids released by viral lysis
AU - Shelford, Emma J.
AU - Jørgensen, Niels O. G.
AU - Rasmussen, Susan
AU - Suttle, Curtis A.
AU - Middelboe, Mathias
PY - 2014
Y1 - 2014
N2 - Lysis of marine bacteria by viruses releases a range of organic compounds into the environment, including D- and L-amino acids, but the uptake of these compounds by other bacteria is not well characterized. This study determined that Photobacterium sp. strain SKA34 (Gamma - proteobacteria) increased in abundance following uptake of D- and L-amino acids from viral lysate of Cellulophaga sp. strain MM#3 (Flavobacteria). Ammonium and dissolved free amino acids were taken up almost to detection limits, suggesting that the C:N ratio of bioavailable organic matter in the lysate was high for Photobacterium sp. growth, thus causing a net uptake of ammonium. In contrast, only 1.51 μmol l−1 of the 4.77 μmol l−1 of the total dissolved combined amino acids (DCAAs) were taken up, indicating that a fraction of lysate-derived DCAAs were semi-labile or refractory to bacterial uptake. Both D- and L-amino acid uptake rates were approximately proportional to their concentrations, indicating similar availability for each enantiomer and unsaturated uptake rates. These results imply that under high C:N conditions, both D-amino acids (mainly found in bacterial cell walls) and L-amino acids (found in proteins of the rest of the cell) are equally available for bacterial growth, and support arguments that viruses are key players in marine nitrogen cycling.
AB - Lysis of marine bacteria by viruses releases a range of organic compounds into the environment, including D- and L-amino acids, but the uptake of these compounds by other bacteria is not well characterized. This study determined that Photobacterium sp. strain SKA34 (Gamma - proteobacteria) increased in abundance following uptake of D- and L-amino acids from viral lysate of Cellulophaga sp. strain MM#3 (Flavobacteria). Ammonium and dissolved free amino acids were taken up almost to detection limits, suggesting that the C:N ratio of bioavailable organic matter in the lysate was high for Photobacterium sp. growth, thus causing a net uptake of ammonium. In contrast, only 1.51 μmol l−1 of the 4.77 μmol l−1 of the total dissolved combined amino acids (DCAAs) were taken up, indicating that a fraction of lysate-derived DCAAs were semi-labile or refractory to bacterial uptake. Both D- and L-amino acid uptake rates were approximately proportional to their concentrations, indicating similar availability for each enantiomer and unsaturated uptake rates. These results imply that under high C:N conditions, both D-amino acids (mainly found in bacterial cell walls) and L-amino acids (found in proteins of the rest of the cell) are equally available for bacterial growth, and support arguments that viruses are key players in marine nitrogen cycling.
U2 - 10.3354/ame01720
DO - 10.3354/ame01720
M3 - Journal article
SN - 0948-3055
VL - 73
SP - 235
EP - 243
JO - Aquatic Microbial Ecology
JF - Aquatic Microbial Ecology
IS - 3
ER -