TY - JOUR
T1 - Curcumin effectively inhibits oncogenic NF-kB signaling and restrains stemness features in liver cancer
AU - Marquardt, Jens U
AU - Gomez-Quiroz, Luis
AU - Arreguin Camacho, Lucrecia O
AU - Pinna, Federico
AU - Lee, Yun-Han
AU - Kitade, Mitsuteru
AU - Domínguez, Mayrel Palestino
AU - Castven, Darko
AU - Breuhahn, Kai
AU - Conner, Elizabeth A
AU - Galle, Peter R
AU - Andersen, Jesper Bøje
AU - Factor, Valentina M
AU - Thorgeirsson, Snorri S
N1 - Copyright © 2015. Published by Elsevier B.V.
PY - 2015/9/1
Y1 - 2015/9/1
N2 - Background & Aims The cancer stem cells (CSCs) have important therapeutic implications for multi-resistant cancers including hepatocellular carcinoma (HCC). Among the key pathways frequently activated in liver CSCs is NF-κB signaling. Methods We evaluated the CSCs-depleting potential of NF-κB inhibition in liver cancer achieved by the IKK inhibitor curcumin, RNAi and specific peptide SN50. The effects on CSCs were assessed by analysis of side population (SP), sphere formation and tumorigenicity. Molecular changes were determined by RT-qPCR, global gene expression microarray, EMSA, and Western blotting. Results HCC cell lines exposed to curcumin exhibited differential responses to curcumin and were classified as sensitive and resistant. In sensitive lines, curcumin-mediated induction of cell death was directly related to the extent of NF-κB inhibition. The treatment also led to a selective CSC-depletion as evidenced by a reduced SP size, decreased sphere formation, down-regulation of CSC markers and suppressed tumorigenicity. Similarly, NF-κB inhibition by SN50 and siRNA against p65 suppressed tumor cell growth. In contrast, curcumin-resistant cells displayed a paradoxical increase in proliferation and expression of CSC markers. Mechanistically, an important component of the CSC-depleting activity of curcumin could be attributed to a NF-κB-mediated HDAC inhibition. Co-administration of the class I/II HDAC inhibitor trichostatine sensitized resistant cells to curcumin. Further, integration of a predictive signature of curcumin sensitivity with human HCC database indicated that HCCs with poor prognosis and progenitor features are most likely to benefit from NF-κB inhibition. Conclusions These results demonstrate that blocking NF-κB can specifically target CSC populations and suggest a potential for combined inhibition of NF-κB and HDAC signaling for treatment of liver cancer patients with poor prognosis.
AB - Background & Aims The cancer stem cells (CSCs) have important therapeutic implications for multi-resistant cancers including hepatocellular carcinoma (HCC). Among the key pathways frequently activated in liver CSCs is NF-κB signaling. Methods We evaluated the CSCs-depleting potential of NF-κB inhibition in liver cancer achieved by the IKK inhibitor curcumin, RNAi and specific peptide SN50. The effects on CSCs were assessed by analysis of side population (SP), sphere formation and tumorigenicity. Molecular changes were determined by RT-qPCR, global gene expression microarray, EMSA, and Western blotting. Results HCC cell lines exposed to curcumin exhibited differential responses to curcumin and were classified as sensitive and resistant. In sensitive lines, curcumin-mediated induction of cell death was directly related to the extent of NF-κB inhibition. The treatment also led to a selective CSC-depletion as evidenced by a reduced SP size, decreased sphere formation, down-regulation of CSC markers and suppressed tumorigenicity. Similarly, NF-κB inhibition by SN50 and siRNA against p65 suppressed tumor cell growth. In contrast, curcumin-resistant cells displayed a paradoxical increase in proliferation and expression of CSC markers. Mechanistically, an important component of the CSC-depleting activity of curcumin could be attributed to a NF-κB-mediated HDAC inhibition. Co-administration of the class I/II HDAC inhibitor trichostatine sensitized resistant cells to curcumin. Further, integration of a predictive signature of curcumin sensitivity with human HCC database indicated that HCCs with poor prognosis and progenitor features are most likely to benefit from NF-κB inhibition. Conclusions These results demonstrate that blocking NF-κB can specifically target CSC populations and suggest a potential for combined inhibition of NF-κB and HDAC signaling for treatment of liver cancer patients with poor prognosis.
U2 - 10.1016/j.jhep.2015.04.018
DO - 10.1016/j.jhep.2015.04.018
M3 - Journal article
C2 - 25937435
SN - 0169-5185
SN - 1600-0641
JO - Journal of Hepatology
JF - Journal of Hepatology
ER -