Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2

Yajie Gao, Thomas C. de Bang, Jan K. Schjoerring*

*Corresponding author for this work
13 Citations (Scopus)
26 Downloads (Pure)

Abstract

Cytosolic glutamine synthetase (GS1) plays a central role in nitrogen (N) metabolism. The importance of GS1 in N remobilization during reproductive growth has been reported in cereal species but attempts to improve N utilization efficiency (NUE) by overexpressing GS1 have yielded inconsistent results. Here, we demonstrate that transformation of barley (Hordeum vulgare L.) plants using a cisgenic strategy to express an extra copy of native HvGS1-1 lead to increased HvGS1.1 expression and GS1 enzyme activity. GS1 overexpressing lines exhibited higher grain yields and NUE than wild-type plants when grown under three different N supplies and two levels of atmospheric CO2. In contrast with the wild-type, the grain protein concentration in the GS1 overexpressing lines did not decline when plants were exposed to elevated (800–900 μL/L) atmospheric CO2. We conclude that an increase in GS1 activity obtained through cisgenic overexpression of HvGS1-1 can improve grain yield and NUE in barley. The extra capacity for N assimilation obtained by GS1 overexpression may also provide a means to prevent declining grain protein levels under elevated atmospheric CO2.

Original languageEnglish
JournalPlant Biotechnology Journal
Volume17
Issue number7
Pages (from-to)1209-1221
ISSN1467-7644
DOIs
Publication statusPublished - Jul 2019

Keywords

  • barley
  • carbon dioxide (CO)
  • cisgenesis
  • glutamine synthetase (GS)
  • grain protein
  • Nitrogen use efficiency (NUE)

Fingerprint

Dive into the research topics of 'Cisgenic overexpression of cytosolic glutamine synthetase improves nitrogen utilization efficiency in barley and prevents grain protein decline under elevated CO2'. Together they form a unique fingerprint.

Cite this