Abstract
We investigate nonlocality distillation using measures of nonlocality based on the Elitzur-Popescu-Rohrlich decomposition. For a certain number of copies of a given nonlocal box, we define two quantities of interest: (i) the nonlocal cost and (ii) the distillable nonlocality. We find that there exist boxes whose distillable nonlocality is strictly smaller than their nonlocal cost. Thus nonlocality displays a form of irreversibility which we term "bound nonlocality." Finally, we show that nonlocal distillability can be activated.
Original language | English |
---|---|
Journal | Physical Review Letters |
Volume | 106 |
Issue number | 2 |
Pages (from-to) | 020402 |
ISSN | 0031-9007 |
DOIs | |
Publication status | Published - 10 Jan 2011 |