Abstract
We investigate nonlocality distillation using measures of nonlocality based on the Elitzur-Popescu-Rohrlich decomposition. For a certain number of copies of a given nonlocal box, we define two quantities of interest: (i) the nonlocal cost and (ii) the distillable nonlocality. We find that there exist boxes whose distillable nonlocality is strictly smaller than their nonlocal cost. Thus nonlocality displays a form of irreversibility which we term "bound nonlocality." Finally, we show that nonlocal distillability can be activated.
Originalsprog | Engelsk |
---|---|
Tidsskrift | Physical Review Letters |
Vol/bind | 106 |
Udgave nummer | 2 |
Sider (fra-til) | 020402 |
ISSN | 0031-9007 |
DOI | |
Status | Udgivet - 10 jan. 2011 |