Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells

Mille Løhr, Annie Jensen, Louise Eriksen, Morten Grønbæk, Steffen Loft, Peter Møller

22 Citations (Scopus)

Abstract

Aging is associated with oxidative stress-generated damage to DNA and this could be related to metabolic disturbances. This study investigated the association between levels of oxidatively damaged DNA in peripheral blood mononuclear cells (PBMCs) and metabolic risk factors in 1,019 subjects, aged 18-93 years. DNA damage was analyzed as strand breaks by the comet assay and levels of formamidopyrimidine (FPG-) and human 8-oxoguanine DNA glycosylase 1 (hOGG1)-sensitive sites There was an association between age and levels of FPG-sensitive sites for women, but not for men. The same tendency was observed for the level of hOGG1-sensitive sites, whereas there was no association with the level of strand breaks. The effect of age on oxidatively damaged DNA in women disappeared in multivariate models, which showed robust positive associations between DNA damage and plasma levels of triglycerides, cholesterol and glycosylated hemoglobin (HbA1c). In the group of men, there were significant positive associations between alcohol intake, HbA1c and FPG-sensitive sites in multivariate analysis. The levels of metabolic risk factors were positively associated with age, yet only few subjects fulfilled all metabolic syndrome criteria. In summary, positive associations between age and levels of oxidatively damaged DNA appeared mediated by age-related increases in metabolic risk factors.

Original languageEnglish
JournalOncoTarget
Volume6
Issue number5
Pages (from-to)2641-2653
Number of pages13
ISSN1949-2553
DOIs
Publication statusPublished - Feb 2015

Fingerprint

Dive into the research topics of 'Age and metabolic risk factors associated with oxidatively damaged DNA in human peripheral blood mononuclear cells'. Together they form a unique fingerprint.

Cite this