TY - JOUR
T1 - The truncated metabolite GLP-2 (3-33) interacts with the GLP-2 receptor as a partial agonist.
AU - Thulesen, Jesper
AU - Knudsen, Lotte Bjerre
AU - Hartmann, Bolette
AU - Hastrup, Sven
AU - Kissow, Hannelouise
AU - Jeppesen, Palle Bekker
AU - Ørskov, Cathrine
AU - Holst, Jens Juul
AU - Poulsen, Steen Seier
N1 - Keywords: Animals; Body Weight; Cell Line; Cricetinae; Cyclic AMP; Drug Administration Schedule; Female; Glucagon-Like Peptide 2; Glucagon-Like Peptides; Humans; Image Processing, Computer-Assisted; Injections, Subcutaneous; Intestine, Large; Intestine, Small; Mice; Mice, Inbred C57BL; Organ Size; Peptide Fragments; Protein Binding; Random Allocation; Receptors, Glucagon; Recombinant Proteins; Transfection
PY - 2002
Y1 - 2002
N2 - The therapeutic potential of the intestinotrophic mediator glucagon-like peptide-2 (1-33) [GLP-2 (1-33)] has increased interest in the pharmacokinetics of the peptide. This study was undertaken to investigate whether the primary degradation product GLP-2 (3-33) interacts with the GLP-2 receptor. Functional (cAMP) and binding in vitro studies were carried out in cells expressing the transfected human GLP-2 receptor. Furthermore, a biologic response of GLP-2 (3-33) was tested in vivo. Mice were allocated to groups treated for 10 days (twice daily) with: (1) 5 microg GLP-2 (1-33), (2) 25 microg GLP-2 (3-33), (3) 5 microg GLP-2 (1-33)+100 microg GLP-2 (3-33), or (4) 5 microg GLP-2 (1-33)+500 microg GLP-2 (3-33). The intestine was investigated for growth changes. GLP-2 (3-33) bound to the GLP-2 receptor with a binding affinity of 7.5% of that of GLP-2 (1-33). cAMP accumulation was stimulated with an efficacy of 15% and a potency more than two orders of magnitude lower than that of GLP-2 (1-33). Increasing doses of GLP-2 (3-33) (10(-7)-10(-5) M) caused a shift to the right in the dose-response curve of GLP-2 (1-33). Treatment of mice with either GLP-2 (1-33) or (3-33) induced significant growth responses in both the small and large intestines, but the response induced by GLP-2 (3-33) was much smaller. Co-administration of 500 microg of GLP-2 (3-33) and 5 microg GLP-2 (1-33) resulted in a growth response that was smaller than that of 5 microg GLP-2 (1-33) alone. Consistent with the observed in vivo activities, our functional studies and binding data indicate that GLP-2 (3-33) acts as a partial agonist with potential competitive antagonistic properties on the GLP-2 receptor.
AB - The therapeutic potential of the intestinotrophic mediator glucagon-like peptide-2 (1-33) [GLP-2 (1-33)] has increased interest in the pharmacokinetics of the peptide. This study was undertaken to investigate whether the primary degradation product GLP-2 (3-33) interacts with the GLP-2 receptor. Functional (cAMP) and binding in vitro studies were carried out in cells expressing the transfected human GLP-2 receptor. Furthermore, a biologic response of GLP-2 (3-33) was tested in vivo. Mice were allocated to groups treated for 10 days (twice daily) with: (1) 5 microg GLP-2 (1-33), (2) 25 microg GLP-2 (3-33), (3) 5 microg GLP-2 (1-33)+100 microg GLP-2 (3-33), or (4) 5 microg GLP-2 (1-33)+500 microg GLP-2 (3-33). The intestine was investigated for growth changes. GLP-2 (3-33) bound to the GLP-2 receptor with a binding affinity of 7.5% of that of GLP-2 (1-33). cAMP accumulation was stimulated with an efficacy of 15% and a potency more than two orders of magnitude lower than that of GLP-2 (1-33). Increasing doses of GLP-2 (3-33) (10(-7)-10(-5) M) caused a shift to the right in the dose-response curve of GLP-2 (1-33). Treatment of mice with either GLP-2 (1-33) or (3-33) induced significant growth responses in both the small and large intestines, but the response induced by GLP-2 (3-33) was much smaller. Co-administration of 500 microg of GLP-2 (3-33) and 5 microg GLP-2 (1-33) resulted in a growth response that was smaller than that of 5 microg GLP-2 (1-33) alone. Consistent with the observed in vivo activities, our functional studies and binding data indicate that GLP-2 (3-33) acts as a partial agonist with potential competitive antagonistic properties on the GLP-2 receptor.
M3 - Journal article
C2 - 11738243
SN - 0167-0115
VL - 103
SP - 9
EP - 15
JO - Regulatory Peptides
JF - Regulatory Peptides
IS - 1
ER -