TY - JOUR
T1 - Stereochemistry and molecular pharmacology of (S)-thio-ATPA, a new potent and selective GluR5 agonist
AU - Stensbøl, T B
AU - Jensen, H S
AU - Nielsen, B
AU - Johansen, T N
AU - Egebjerg, J
AU - Frydenvang, Karla Andrea
AU - Krogsgaard-Larsen, P
PY - 2001
Y1 - 2001
N2 - (RS)-2-Amino-3-(5-tert-butyl-3-hydroxy-4-isothiazolyl)propionic acid (thio-ATPA), a 3-isothiazolol analogue of (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), has previously been shown to be a relatively weak AMPA receptor agonist at native (S)-glutamic acid ((S)-Glu) receptors (EC(50)=14 microM), comparable in potency with ATPA (EC(50)=34 microM). Recent findings, that (S)-ATPA is a potent (EC(50)=0.48 microM) and selective agonist at homomerically expressed ionotropic GluR5, prompted us to resolve thio-ATPA using chiral chromatography and pharmacologically characterize the two enantiomers at native as well as cloned ionotropic glutamate receptors. The enantiomers, (S)- and (R)-thio-ATPA, were obtained in high enantiomeric excess, and their absolute stereochemistry established by an X-ray crystallographic analysis. Electrophysiologically, the two enantiomers were evaluated in the rat cortical wedge preparation, and the S-enantiomer was found to be an AMPA receptor agonist (EC(50)=8.7 microM) twice as potent as the racemate, whereas the R-enantiomer was devoid of activity. In accordance with this, (S)-thio-ATPA proved to be an agonist at homomerically expressed recombinant AMPA receptors (GluR1o, GluR3o, and GluR4o) with EC(50) values of 5, 32 and 20 microM, respectively, producing maximal steady state currents of 78--168% of those maximally evoked by kainic acid, and 120-1600% of those maximally evoked by (S)-ATPA. At homomerically expressed GluR5, (S)-thio-ATPA was found to be a potent agonist (EC(50)=0.10 microM), thus being approximately five times more potent than (S)-ATPA. (R)-Thio-ATPA induced saturating currents with an estimated EC(50) value of 10 microM, most likely due to a contamination with (S)-thio-ATPA. At heteromerically expressed GluR6+KA2 receptors, (S)-thio-ATPA showed relatively weak agonistic properties (EC(50)=4.9 microM). Thus, (S)-thio-ATPA has been shown to be a very potent agonist at GluR5, and may be a valuable tool for the investigation of desensitization properties of AMPA receptors.
AB - (RS)-2-Amino-3-(5-tert-butyl-3-hydroxy-4-isothiazolyl)propionic acid (thio-ATPA), a 3-isothiazolol analogue of (RS)-2-amino-3-(5-tert-butyl-3-hydroxy-4-isoxazolyl)propionic acid (ATPA), has previously been shown to be a relatively weak AMPA receptor agonist at native (S)-glutamic acid ((S)-Glu) receptors (EC(50)=14 microM), comparable in potency with ATPA (EC(50)=34 microM). Recent findings, that (S)-ATPA is a potent (EC(50)=0.48 microM) and selective agonist at homomerically expressed ionotropic GluR5, prompted us to resolve thio-ATPA using chiral chromatography and pharmacologically characterize the two enantiomers at native as well as cloned ionotropic glutamate receptors. The enantiomers, (S)- and (R)-thio-ATPA, were obtained in high enantiomeric excess, and their absolute stereochemistry established by an X-ray crystallographic analysis. Electrophysiologically, the two enantiomers were evaluated in the rat cortical wedge preparation, and the S-enantiomer was found to be an AMPA receptor agonist (EC(50)=8.7 microM) twice as potent as the racemate, whereas the R-enantiomer was devoid of activity. In accordance with this, (S)-thio-ATPA proved to be an agonist at homomerically expressed recombinant AMPA receptors (GluR1o, GluR3o, and GluR4o) with EC(50) values of 5, 32 and 20 microM, respectively, producing maximal steady state currents of 78--168% of those maximally evoked by kainic acid, and 120-1600% of those maximally evoked by (S)-ATPA. At homomerically expressed GluR5, (S)-thio-ATPA was found to be a potent agonist (EC(50)=0.10 microM), thus being approximately five times more potent than (S)-ATPA. (R)-Thio-ATPA induced saturating currents with an estimated EC(50) value of 10 microM, most likely due to a contamination with (S)-thio-ATPA. At heteromerically expressed GluR6+KA2 receptors, (S)-thio-ATPA showed relatively weak agonistic properties (EC(50)=4.9 microM). Thus, (S)-thio-ATPA has been shown to be a very potent agonist at GluR5, and may be a valuable tool for the investigation of desensitization properties of AMPA receptors.
KW - Alanine
KW - Animals
KW - Chromatography, High Pressure Liquid
KW - Cloning, Molecular
KW - Excitatory Amino Acid Agonists
KW - Kinetics
KW - Membrane Potentials
KW - Molecular Conformation
KW - Oocytes
KW - Patch-Clamp Techniques
KW - Rats
KW - Receptors, AMPA
KW - Stereoisomerism
KW - Thiazoles
KW - Transcription, Genetic
KW - Xenopus laevis
M3 - Journal article
C2 - 11164381
SN - 0014-2999
VL - 411
SP - 245
EP - 253
JO - European Journal of Pharmacology
JF - European Journal of Pharmacology
IS - 3
ER -