TY - JOUR
T1 - Standardization from a benchtop to a handheld NIR spectrometer using mathematically mixed NIR spectra to determine fuel quality parameters
AU - da Silva, Neirivaldo Cavalcante
AU - Cavalcanti, Claudia Jessica
AU - Honorato, Fernanda Araujo
AU - Amigo Rubio, Jose Manuel
AU - Pimentel, Maria Fernanda
PY - 2017/2/15
Y1 - 2017/2/15
N2 - The interest in performing in field measures using portable instruments is growing increasingly. Calibration transfer techniques can be used to enable models, predicted values or spectra obtained in a benchtop instrument be used in portable instrument, saving money and time required for a complete recalibration. Most of the calibration transfer methods require a set of transfer samples which spectra have to be acquired in both spectrometers. The present work evaluates the use of virtual standards as transfer samples in the reverse standardization (RS) method in order to standardize very dissimilar spectral responses of fuel samples (gasoline and biodiesel blends) from a high-resolution benchtop Frontier FT-NIR (PerkinElmer) spectrometer and a handheld MicroNIR™1700 (JDSU). These virtual standards can be created by mathematically mixing spectra from the pure solvents present in gasoline or diesel/biodiesel (D/B) blends, to avoid volatilization and changes in the composition of the compounds during storage and/or transportation of the real transfer fuel samples. Virtual standards were created using ten and five pure solvents for gasoline and D/B blends, respectively. Partial least squares regression (PLS) models were built for five quality parameters of gasoline (distillation temperatures at 10%, 50%, 90% and final boiling point (FBP) volume recovered and density) and one of D/B blends (biodiesel content). The RMSEP values obtained after the standardization approaches were equivalent to the reproducibility of the reference methods, except for density and biodiesel content parameters obtained for the virtual samples standardization approach. RS procedure provided promising results showing that it is possible to transfer gasoline or D/B blend spectra acquired with a high-resolution benchtop instrument to the handheld MicroNIR using virtual standards as transfer samples
AB - The interest in performing in field measures using portable instruments is growing increasingly. Calibration transfer techniques can be used to enable models, predicted values or spectra obtained in a benchtop instrument be used in portable instrument, saving money and time required for a complete recalibration. Most of the calibration transfer methods require a set of transfer samples which spectra have to be acquired in both spectrometers. The present work evaluates the use of virtual standards as transfer samples in the reverse standardization (RS) method in order to standardize very dissimilar spectral responses of fuel samples (gasoline and biodiesel blends) from a high-resolution benchtop Frontier FT-NIR (PerkinElmer) spectrometer and a handheld MicroNIR™1700 (JDSU). These virtual standards can be created by mathematically mixing spectra from the pure solvents present in gasoline or diesel/biodiesel (D/B) blends, to avoid volatilization and changes in the composition of the compounds during storage and/or transportation of the real transfer fuel samples. Virtual standards were created using ten and five pure solvents for gasoline and D/B blends, respectively. Partial least squares regression (PLS) models were built for five quality parameters of gasoline (distillation temperatures at 10%, 50%, 90% and final boiling point (FBP) volume recovered and density) and one of D/B blends (biodiesel content). The RMSEP values obtained after the standardization approaches were equivalent to the reproducibility of the reference methods, except for density and biodiesel content parameters obtained for the virtual samples standardization approach. RS procedure provided promising results showing that it is possible to transfer gasoline or D/B blend spectra acquired with a high-resolution benchtop instrument to the handheld MicroNIR using virtual standards as transfer samples
KW - Reverse standardization
KW - Virtual standards
KW - Near infrared
KW - Handheld spectrometer
KW - Fuel
U2 - 10.1016/j.aca.2016.12.018
DO - 10.1016/j.aca.2016.12.018
M3 - Journal article
C2 - 28081812
SN - 0003-2670
VL - 954
SP - 32
EP - 42
JO - Analytica Chimica Acta
JF - Analytica Chimica Acta
ER -