Shrubland primary production and soil respiration diverge along European climate gradient

Sabine Reinsch*, Eva Koller, Alwyn Sowerby, Giovanbattista de Dato, Marc Estiarte, Gabriele Guidolotti, Edit Kovács-Láng, György Kröel-Dulay, Eszter Lellei-Kovács, Klaus Steenberg Larsen, Dario Liberati, Josep Peñuelas, Johannes Ransijn, David A. Robinson, Inger Kappel Schmidt, Andrew R. Smith, Albert Tietema, Jeffrey S. Dukes, Claus Beier, Bridget A. Emmett

*Corresponding author af dette arbejde
15 Citationer (Scopus)
51 Downloads (Pure)

Abstract

Above- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change.

OriginalsprogEngelsk
Artikelnummer43952
TidsskriftScientific Reports
Vol/bind7
Antal sider7
ISSN2045-2322
DOI
StatusUdgivet - 2017

Fingeraftryk

Dyk ned i forskningsemnerne om 'Shrubland primary production and soil respiration diverge along European climate gradient'. Sammen danner de et unikt fingeraftryk.

Citationsformater