Probabilistic shortest path tractography in DTI using gaussian process ODE solvers

Michael Schober, Niklas Kasenburg, Aasa Feragen, Philipp Hennig, Søren Hauberg

20 Citationer (Scopus)

Abstract

Tractography in diffusion tensor imaging estimates connectivity in the brain through observations of local diffusivity. These observations are noisy and of low resolution and, as a consequence, connections cannot be found with high precision. We use probabilistic numerics to estimate connectivity between regions of interest and contribute a Gaussian Process tractography algorithm which allows for both quantification and visualization of its posterior uncertainty. We use the uncertainty both in visualization of individual tracts as well as in heat maps of tract locations. Finally, we provide a quantitative evaluation of different metrics and algorithms showing that the adjoint metric [8] combined with our algorithm produces paths which agree most often with experts.

OriginalsprogEngelsk
TitelMedical image computing and computer-assisted intervention – MICCAI 2014 : 17th International Conference, Boston, MA, USA, September 14-18, 2014, Proceedings, Part III
RedaktørerPolina Golland, Nobuhiko Hata, Christian Barillot, Joachim Hornegger, Robert Howe
Antal sider8
ForlagSpringer
Publikationsdato2014
Sider265-272
Kapitel34
ISBN (Trykt)978-3-319-10442-3
DOI
StatusUdgivet - 2014
BegivenhedInternational Conference, MICCAI 2014 - Boston, USA
Varighed: 14 sep. 201418 sep. 2014
Konferencens nummer: 17

Konference

KonferenceInternational Conference, MICCAI 2014
Nummer17
Land/OmrådeUSA
ByBoston
Periode14/09/201418/09/2014
NavnLecture notes in computer science
Vol/bind8675
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Probabilistic shortest path tractography in DTI using gaussian process ODE solvers'. Sammen danner de et unikt fingeraftryk.

Citationsformater