Network-guided group feature selection for classification of autism spectrum disorder

Veronika Cheplygina, David M.J. Tax, Marco Loog, Aasa Feragen

3 Citationer (Scopus)

Abstract

We present an anatomically guided feature selection scheme for prediction of neurological disorders based on brain connectivity networks. Using anatomical information not only gives rise to an interpretable model, but also prevents overfitting, caused by high dimensionality, noise and correlated features. Our method selects meaningful and discriminative groups of connections between anatomical regions, which can be used as input for any supervised classifier, such as logistic regression or a support vector machine. We demonstrate the effectiveness of our method on a dataset of autism spectrum disorder, with an AUC of 0.76, outperforming baseline methods.

OriginalsprogEngelsk
TitelMachine learning in medical imaging : 5th International Workshop, MLMI 2014, Held in Conjunction with MICCAI 2014, Boston, MA, USA, September 14, 2014. Proceedings
RedaktørerGuorong Wu, Daoqiang Zhang, Luping Zhou
Antal sider8
ForlagSpringer
Publikationsdato2014
Sider190-197
Kapitel24
ISBN (Trykt)978-3-319-10580-2
ISBN (Elektronisk)978-3-319-10581-9
DOI
StatusUdgivet - 2014
Begivenhed5th International Workshop on Machine Learning in Medical Imaging - Boston, USA
Varighed: 14 sep. 201414 sep. 2014
Konferencens nummer: 5

Konference

Konference5th International Workshop on Machine Learning in Medical Imaging
Nummer5
Land/OmrådeUSA
ByBoston
Periode14/09/201414/09/2014
NavnLecture notes in computer science
Vol/bind8679
ISSN0302-9743

Fingeraftryk

Dyk ned i forskningsemnerne om 'Network-guided group feature selection for classification of autism spectrum disorder'. Sammen danner de et unikt fingeraftryk.

Citationsformater