Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance

Sonia Cristina Pinela da Silva, Veronika Altmannova, Sarah Luke-Glaser, Peter Henriksen, Irene Gallina, Xuejiao Yang, Chuna Ram Choudhary, Brian Luke, Lumir Krejci, Michael Lisby

19 Citationer (Scopus)
161 Downloads (Pure)

Abstract

Mph1 is a member of the conserved FANCM family of DNA motor proteins that play key roles in genome maintenance processes underlying Fanconi anemia, a cancer predisposition syndrome in humans. Here, we identify Mte1 as a novel interactor of the Mph1 helicase in Saccharomyces cerevisiae. In vitro, Mte1 (Mph1-associated telomere maintenance protein 1) binds directly to DNA with a preference for branched molecules such as D loops and fork structures. In addition, Mte1 stimulates the helicase and fork regression activities of Mph1 while inhibiting the ability of Mph1 to dissociate recombination intermediates. Deletion of MTE1 reduces crossover recombination and suppresses the sensitivity of mph1Δ mutant cells to replication stress. Mph1 and Mte1 interdependently colocalize atDNAdamage-induced foci and dysfunctional telomeres, and MTE1 deletion results in elongated telomeres. Taken together, our data indicate that Mte1 plays a role in regulation of crossover recombination, response to replication stress, and telomere maintenance.

OriginalsprogEngelsk
TidsskriftGenes & Development
Vol/bind30
Udgave nummer6
Sider (fra-til)700-717
Antal sider18
ISSN0890-9369
DOI
StatusUdgivet - 15 mar. 2016

Fingeraftryk

Dyk ned i forskningsemnerne om 'Mte1 interacts with Mph1 and promotes crossover recombination and telomere maintenance'. Sammen danner de et unikt fingeraftryk.

Citationsformater