Large deviations for solutions to stochastic recurrence equations under Kesten's condition

Dariusz Buraczewski, Ewa Damek, Thomas Valentin Mikosch, J. Zienkiewicz

10 Citationer (Scopus)

Abstract

In this paper we prove large deviations results for partial sums constructed from the solution to a stochastic recurrence equation. We assume Kesten’s condition [17] under which the solution of the stochastic recurrence equation has a marginal distribution with power law tails, while the noise sequence of the equations can have light tails. The results of the paper are analogs of those obtained by A.V. and S.V. Nagaev [21, 22] in the case of partial sums of iid random variables. In the latter case, the large deviation probabilities of the partial sums are essentially determined by the largest step size of the partial sum. For the solution to a stochastic recurrence equation, the magnitude of the large deviation probabilities is again given by the tail of the maximum summand, but the exact asymptotic tail behavior is also influenced by clusters of extreme values, due to dependencies in the sequence. We apply the large deviation results to study the asymptotic behavior of the ruin probabilities in the model. (1.1)
OriginalsprogEngelsk
TidsskriftAnnals of Probability
Vol/bind41
Udgave nummer4
Sider (fra-til)2755-2790
ISSN0091-1798
DOI
StatusUdgivet - 2013

Fingeraftryk

Dyk ned i forskningsemnerne om 'Large deviations for solutions to stochastic recurrence equations under Kesten's condition'. Sammen danner de et unikt fingeraftryk.

Citationsformater